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Abstract. A model of an information system describes its processes and
how these processes manipulate data objects. Object-aware extensions
of Petri nets focus on modeling both the life-cycle of objects, and their
interactions. In this paper, we focus on Petri nets with identifiers, where
identifiers are used to refer to objects. These objects should “behave”
well in the system from inception to termination. We formalize this intu-
ition in the notion of identifier soundness, and show that although this
property is undecidable in general, useful subclasses exist that guarantee
identifier soundness by construction.

Keywords: Information System ➲ Verification ➲ Data and Processes

1 Introduction

Petri nets are widely used to describe distributed systems capable of expanding
their resources indefinitely [26]. A Petri net describes passive and active com-
ponents of a system, modeled as places and transitions, respectively. The active
components of a Petri net communicate asynchronously with each other via local
interfaces. Thus, state changes in a Petri net system have local causes and effects
and are modeled as tokens consumed, produced, or transferred by the transitions
of the system. A token is often used to denote an object in the physical world the
system manipulates or a condition that can cause a state change in the system.

Petri nets with identifiers extend classical Petri nets to provide formal means
to relate tokens to objects. Every token in such a Petri net is associated with a
vector of identifiers, where each identifier uniquely identifies a data object. Con-
sequently, active components of a Petri net with identifiers model how groups
of objects, either envisioned or those existing in the physical world, can be con-
sumed, produced, or transferred by the system.

It is often desirable that modeled systems are correct. Many criteria have
been devised for assessing the correctness of systems captured as Petri nets.
Those criteria target models of systems that use tokens to represent conditions



that control their state changes. In other words, they can be used to verify the
correctness of processes the systems can support and not of the object manip-
ulations carried out within those processes. Such widely-used criteria include
boundedness [18], liveness [12], and soundness [1]. The latter one, for instance,
ensures that a system modeled as a workflow net, a special type of a Petri net
used to encode workflow at an organization, has a terminal state that can be
distinguished from other states of the modeled system, the system can always
reach the terminal state, and every transition of the system can in principle be
enabled and, thus, used by the system.

Real-world systems, such as information systems [25], are characterized by
processes that manipulate objects. For instance, an online retailer system ma-
nipulates products, invoices, and customer records. However, correctness criteria
that address both aspects, that is, the processes and data, are understood less
well. Hence, the paper at hand to close the gap.

In this paper, we propose a correctness criterion for Petri nets with identifiers
that combines the checks of the soundness of the system’s processes with the
soundness of object manipulations within those processes. Intuitively, objects of
a specific type are correctly manipulated by the system if every object instance
of that type, characterized by a unique identifier, can “leave” the system, that is,
a dedicated transition of the system can consume it, and once that happens, no
references to that object instance remain in the system. When a system achieves
this harmony for its processes and all data object types, we say that the system
is identifier sound, or, alternatively, that the data and processes of the system
are in resonance. Specifically, this paper makes these contributions:

– It motivates and defines the notion of identifier soundness for checking cor-
rectness of data object manipulations in processes of a system; and

– It discusses aspects related to decidability of identifier soundness in the gen-
eral case, and for certain restricted, but still useful, classes of systems.

The paper proceeds as follows. The next section introduces concepts and
notions required to support subsequent discussions. Section 3 introduces typed
Petri nets with identifiers, a model for modeling distributed systems whose state
is defined by objects the system manipulates. Section 4 presents the notion of
identifier soundness, including a proof that the notion is in general undecidable.
Section 5 discusses several classes of systems for which identifier soundness is
guaranteed by construction. Finally, the paper concludes with a discussion on
related work (Section 6) and future work.

2 Preliminaries

Let S and T be sets. The powerset of S is denoted by ℘(S) = {S′ | S′ ⊆ S}
and |S| denotes the cardinality of S. Given a relation R ⊆ S × T , its range
is defined by rng(R) = {y ∈ T | ∃x ∈ S : (x, y) ∈ R}. A multiset m over
S is a mapping of the form m : S → N, where N = {0, 1, 2, . . .} denotes the
set of natural numbers. For s ∈ S, m(s) ∈ N denotes the number of times s
appears in the multiset. We write sn if m(s) = n. For x 6∈ S, m(x) = 0. We use



S⊕ to denote the set of all finite multisets over S and ∅ to denote the empty
multiset. The support of m ∈ S⊕ is the set of elements that appear in m at least
once: supp(m) = {s ∈ S | m(s) > 0}. Given two multisets m1 and m2 over S:
(i) m1 ⊆ m2 (resp., m1 ⊂ m2) iff m1(s) ≤ m2(s) (resp., m1(s) < m2(s)) for
each s ∈ S; (ii) (m1 +m2)(s) = m1(s) +m2(s) for each s ∈ S; (iii) if m1 ⊆ m2,
(m2 −m1)(s) = m2(s) −m1(s) for each s ∈ S; and (iv) |m| =

∑

s∈Sm(s). A
sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If n > 0 and
σ(i) = ai, for 1 ≤ i ≤ n, we write σ = 〈a1, . . . , an〉. The length of a sequence σ
is denoted by |σ|. The sequence of length 0 is called the empty sequence, and is
denoted by ǫ. The set of all finite sequences over S is denoted by S∗. We write
a ∈ σ if there is 1 ≤ i ≤ |σ| such that σ(i) = a. Projection of sequences on a set T
is defined inductively by ǫ|T = ǫ, (〈a〉 ·σ)|T = 〈a〉 ·σ|T if a ∈ T and 〈a〉 ·σ|T = σ|T
otherwise, where · is the sequence concatenation operator. Renaming a sequence
with an injective function r : S → T is defined inductively by ρr(ǫ) = ǫ, and
ρr(〈a〉 · σ) = 〈r(a)〉 · ρr(σ). Renaming is extended to multisets of sequences as
follows: given a multiset m ∈ (S∗)⊕, we define ρr(m) =

∑

σ∈supp(m) σ(m) ·ρr(σ).

For example, ρ{x 7→a,y 7→b}(〈x, y〉
3) = 〈a, b〉3.

Labeled Transition Systems. To model the behavior of a system, we use
labeled transition systems. Given a finite set A of (action) labels, a (labeled)
transition system (LTS) over A is a tuple Γ = (S,A, s0,→), where S is the
(possibly infinite) set of states, s0 is the initial state and → ⊂ (S×(A∪{τ})×S)
is the transition relation, where τ 6∈ A denotes the silent action [11]. In what

follows, we write s
a
−→ s′ for (s, a, s′) ∈→. Let r : A→ (A′ ∪{τ}) be an injective,

total function. Renaming Γ with r is defined as ρr(Γ ) = (S,A \A′, s0,→
′) with

(s, r(a), s′) ∈→′ iff (s, a, s′) ∈→. Given a set T , hiding is defined as ĤT (Γ ) =
ρh(Γ ) with h : A→ A ∪ {τ} such that h(t) = τ if t ∈ T and h(t) = t otherwise.
Given a ∈ A, p a q denotes a weak transition relation that is defined as follows:
(i) p a q iff p(

τ
−→)∗q1

a
−→ q2(

τ
−→)∗q; (ii) p τ q iff p(

τ
−→)∗q. Here, (

τ
−→)∗ denotes

the reflexive and transitive closure of
τ
−→.

Definition 1 (Strong and weak bisimulation). Let Γ1 = (S1, A, s01,→1)
and Γ2 = (S2, A, s02,→2) be two LTSs. A relation R ⊆ (S1 × S2) is called
a strong simulation, denoted as Γ1 ≺R Γ2, if for every pair (p, q) ∈ R and

a ∈ A∪ {τ}, it holds that if p
a
−→1 p

′, then there exists q′ ∈ S2 such that q
a
−→2 q

′

and (p′, q′) ∈ R. Relation R is a weak simulation, denoted by Γ1 4R Γ2, iff for

every pair (p, q) ∈ R and a ∈ A ∪ {τ} it holds that if p
a
−→1 p

′, then either a = τ

and (p′, q) ∈ R, or there exists q′ ∈ S2 such that q a
2 q

′ and (p′, q′) ∈ R.
R is called a strong (weak) bisimulation, denoted by Γ1 ∼R Γ2 (Γ1 ≈R Γ2) if

both Γ1 ≺ Γ2 (Γ1 4R Γ2) and Γ2 ≺R−1 Γ1 (Γ2 4R−1 Γ1). The relation is called
rooted iff (s01, s02) ∈ R. A rooted relation is indicated with a superscript r. ⊳

Petri nets. A weighted Petri net is a 4-tuple (P, T, F,W ) where P and T are
two disjoint sets of places and transitions, respectively, F ⊆ ((P ×T )∪ (T ×P ))
is the flow relation, and W : F → N

+ is a weight function. For x ∈ P ∪ T , we
write •x = {y | (y, x) ∈ F} to denote the preset of x and x• = {y | (x, y) ∈ F} to
denote the postset of x. We lift the notation of preset and postset to sets element-



wise. If for a Petri net no weight function is defined, we assume W (f) = 1 for
all f ∈ F . A marking of N is a multiset m ∈ P⊕, where m(p) denotes the
number of tokens in place p ∈ P . If m(p) > 0, place p is called marked in
marking m. A marked Petri net is a tuple (N,m) with N a weighted Petri net
with marking m. A transition t ∈ T is enabled in (N,m), denoted by (N,m)[t〉
iff W ((p, t)) ≤ m(p) for all p ∈ •t. An enabled transition can fire, resulting
in marking m′ iff m′(p) + W ((p, t)) = m(p) + W ((t, p)), for all p ∈ P , and
is denoted by (N,m)[t〉(N,m′). We lift the notation of firings to sequences.
A sequence σ ∈ T ∗ is a firing sequence iff σ = ǫ, or markings m0, . . . ,mn

exist such that (N,mi−1)[σ(i)〉(N,mi) for 1 ≤ i ≤ |σ| = n, and is denoted by
(N,m0)[σ〉(N,mn). If the context is clear, we omit the weighted Petri net N .
The set of reachable markings of (N,m) is defined by R(N,m) = {m′ | ∃σ ∈ T ∗ :
m[σ〉m′}. The semantics of a marked Petri net (N,m) with N = (P, T, F,W ) is
defined by the LTS ΓN,m = (P⊕, T,m0,→) with (m, t,m′) ∈→ iff m[t〉m′.

Workflow Nets. A workflow net (WF-net for short) is a tuple N =
(P, T, F,W, in, out) such that: (i) (P, T, F,W ) is a weighted Petri net;
(ii) in, out ∈ P are the source and sink place, respectively, with •in = out• = ∅;
(iii) every node in P ∪ T is on a directed path from in to out . N is called
k-sound for some k ∈ N iff (i) it is proper completing, i.e., for all reachable
markings m ∈ R(N, [ink]), if [outk] ⊆ m, then m = [outk]; (ii) it is weakly ter-
minating, i.e., for any reachable marking m ∈ R(N, [ink]), the final marking is
reachable, i.e., [outk] ∈ R(N,m); and (iii) it is quasi-live, i.e., for all transitions
t ∈ T , there is a marking m ∈ R(N, [in]) such that m[t〉. The net is called sound
if it is 1-sound. If it is k-sound for all k ∈ N, it is called generalized sound [15].

3 Typed Petri nets with Identifiers

Processes and data are highly intertwined: processes manipulate data objects.
These manipulations can be complex and involve multiple objects. As an exam-
ple, consider a retailer shop with three types of objects: products that are sold
through the shop, and customers that can order these products, which is sup-
ported through an order process. Here, object relations can be many-to-many:
e.g., a product can be ordered for many customers and the same customer can
order many products. Relations can also be one-to-many, e.g., an order is always
for a single customer, but a customer can have many orders. In addition, objects
may have their own life cycle, which can be considered to be a process itself.
For example, a product may temporarily be unavailable, or customers may be
blocked by the shop, disallowing them to order products.

Different approaches have been studied to model and analyse such models
that combine objects and processes. For example, data-aware Proclets [7] allow
to describe the behavior of individual artifacts and their interactions. Another
approach is followed in ν-PN [28], in which tokens can carry a single identi-
fier [27]. These identifiers can be used to reference entities in an information
model. However, referencing a fact composed of multiple entities is not possible
in ν-PNs. In this paper, we study typed Petri nets with identifiers (t-PNIDs),



which build upon ν-PNs [28] by extending tokens to carry vectors of identi-
fiers [25, 31]. Vectors, represented by multisets, have the advantage that a single
token can represent multiple objects or entities at the same time, such as for
which customer an order is. Identifiers are typed, i.e., the countable, infinite set
of identifiers is partitioned into a set of types, such that each type contains a
countable, infinite set of identifiers. Variables are typed as well and can only
refer to identifiers of the associated type.

Definition 2 (Identifier Types). Let I, Λ, and V denote countable, infinite
sets of identifiers, type labels, and variables, respectively. We define:
– the domain assignment function I : Λ→ ℘(I), such that I(λ1) is an infinite

set, and I(λ1) ∩ I(λ2) 6= ∅ implies λ1 = λ2 for all λ1, λ2 ∈ Λ;
– the id typing function typeI : I → Λ s.t. if typeI(id) = λ, then id ∈ I(λ);
– a variable typing function typeV : V → Λ, prescribing that x ∈ V can be

substituted only by values from I(typeV(x)).
When clear from the context, we omit the subscripts of type. ⊳

In a t-PNID, each place is annotated with a label, called the place type. A
place type is a vector of types, indicating types of identifier tokens the place
can carry. A place with an empty place type, represented by the empty vector,
is a classical Petri net place carrying indistinguishable (black) tokens. Each arc
is inscribed with a multiset of vectors of identifiers, such that the type of each
variable coincides with the place types. This allows to model situations in which
a transition may require multiple tokens with different identifiers from the same
place.

Definition 3 (Petri net with identifiers). A Typed Petri net with identi-
fiers (t-PNID) N is a tuple (P, T, F, α, β), where:
– (P, T, F ) is a Petri net;
– α : P → Λ∗ is the place typing function;
– β : F → (V∗)⊕ defines for each flow a multiset of variable vectors such

that α(p) = type(x) for any x ∈ supp(β((p, t))) and type(y) = α(p′) for any
y ∈ supp(β((t, p′))) where t ∈ T , p ∈ •t, p′ ∈ t•;

Figure 1 shows a t-PNID, Nrs , of the retailer shop. Each place is colored
according to its identifier type. In Nrs , places product and unavailable product
are annotated with a vector 〈product〉, i.e., these places contain tokens that carry
only a single identifier of type product . Places customer and blocked customer
have type 〈customer〉. All other places, except for place p, are labeled with type
〈order〉. Place p maintains the relation between orders and customers, and is
typed 〈order , customer〉, i.e., tokens in this place are identifier vectors of size 2.
Nrs uses three variables: x for product , y for order and z for customer .

A marking of a t-PNID is the configuration of tokens over the set of places.
Each token in a place should be of the correct type, i.e., the vector of identifiers
carried by a token in a place should match the corresponding place type. All
possible vectors of identifiers a place may carry is defined by the set C(p).

Definition 4 (Marking). Given a t-PNID N = (P, T, F, α, β), and place
p ∈ P , its id set is C(p) =

∏

1≤i≤|α(p)| I(α(p)(i)). A marking is a func-

tion m ∈ M(M), with M(M) = P → (Λ∗)⊕, such that m(p) ∈ C(p)⊕,
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Fig. 1. t-PNID for the retailer shop with types products, customers and orders. Each
place is colored according to its type. Place p carries pairs of identifiers: an order and
a customer.

for each place p ∈ P . The set of identifiers used in M is denoted by
Id(M) =

⋃

p∈P rng(supp(M(p))). The pair (N,M) is called a marked t-PNID.

To define the semantics of a t-PNID, the variables need to be valuated with
identifiers. In Fig. 1, transition G uses variable y to create an identifier of type
order , whereas transition K uses the same variable to remove an identifier from
the marking.

Definition 5 (Variable sets). Given a t-PNID N = (P, T, F, α, β), t ∈ T and
λ ∈ Λ, we define the following sets of variables:

– input variables as In(t) =
⋃

x∈β((p,t)),p∈•t rng(supp(x));
– output variables as Out(t) =

⋃

x∈β((t,p)),p∈t• rng(supp(x));
– variables as Var(t) = In(t) ∪Out(t);
– emitting variables as Emit(t) = Out(t) \ In(t);
– collecting variables as Collect(t) = In(t) \Out(t);
– emitting transitions as EN (λ) = {t | ∃x ∈ Emit(t) ∧ type(x) = λ};
– collecting transitions as CN (λ) = {t | ∃x ∈ Collect(t) ∧ type(x) = λ};

– types in N as type(N) = {~λ | ∃p ∈ P : ~λ ∈ α(p)}. ⊳

As customary in colored Petri nets, the firing of a transition requires a binding
that valuates variables to identifiers. The binding is used to inject new fresh data
into the net via variables that emit identifiers, i.e., via variables that appear only
on the output arcs of that transition. We require bindings to be an injection, i.e.,
no two variables within a binding may refer to the same identifier. Note that in
this definition, freshness of identifiers is local to the marking, i.e., disappeared
identifiers may be reused, as it does not hamper the semantics of the t-PNID.
Our semantics allow the use of well-ordered sets of identifiers, such as the natural
numbers, as used in [25, 27] to ensure that identifiers are globally new. Here we
assume local freshness over global freshness.



Definition 6 (Firing rule). Given a marked t-PNID (N,M) with N =
(P, T, F, α, β), a binding for transition t ∈ T is an injective function ψ : V → I
such that type(v) = type(ψ(v)) and σ(v) 6∈ Id(M) iff v ∈ Emit(t). Tran-
sition t is enabled in (N,M) under binding ψ, denoted by (N,M)[t, ψ〉 iff
ρψ(β(p, t)) ≤ M(p) for all p ∈ •t. Its firing results in marking M ′, denoted
by (N,M)[t, ψ〉(N,M ′), such that M ′(p) + ρψ(β(p, t)) =M(p) + ρψ(β(t, p)). ⊳

Again, the firing rule is inductively extended to sequences η ∈ (T×(V → I))∗.
A marking M ′ is reachable from M if there exists η ∈ (T × (V → I))∗ s.t.
M [η〉M ′. We denote with R(N,M) the set of all markings reachable fromM for
(N,M).

The execution semantics of a t-PNID is defined as an LTS that accounts for
all possible executions starting from a given initial marking.

Definition 7. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), its
induced transition system is ΓN,M0 = (M(N), (T × (V → I)),M0,→) with

M
(t,σ)
−−−→M ′ iff M [t, σ〉M ′.

t-PNIDs are a vector-based extension of ν-PNs. In other words, a ν-PN can
be translated into a strongly bisimilar t-PNID with a single type, and all place
types are of length of at most 1.

Lemma 1. For any ν-PN there exists a single-typed t-PNID such that the two
nets are strongly rooted bisimilar. ⊳

As a result, decidability of reachability for ν-PNs transfers to t-PNIDs [28].

Proposition 1. Reachability is undecidable for t-PNIDs. ⊳

4 Correctness Criteria for t-PNIDs

Many criteria have been devised for assessing the correctness of systems captured
as Petri nets. Traditionally, Petri net-based criteria focus on the correctness
of processes the systems can support. Enriching the formalism with ability to
capture object manipulation while keeping analyzability is a delicate balancing
act. Therefore, object manipulations can only be captured if these are reflected
in the token game of the net.

For t-PNIDs, correctness criteria can be categorized as system-level and as
object-level. Criteria on the system-level focus on traditional Petri net-based
criteria to assess the system as a whole, whereas criteria on object-level address
correctness of individual objects represented by identifiers.

4.1 Correctness Criteria on System-Level

System-level properties address the overall behavior of the system. For exam-
ple, liveness is a typical system-level property. It expresses that any transition
is always eventually enabled again. As such, a live system guarantees that its
activities cannot eventually become unavailable and never recover again.

Definition 8 (Liveness). A marked t-PNID ((P, T, F, α, β),M0) is live iff for
every marking M ∈ R(N,M0) and every transition t ∈ T , there exist a marking
M ′ ∈ R(N,M) and a binding ψ : V → I such that M ′[t, ψ〉. ⊳



Fig. 2. A transition-bordered WF-Net and its closure for soundness [17].

Boundedness expresses that the reachability graph of a Petri net is finite, i.e.,
that there are finitely many tokens in the system. Thus, it is a typical system-level
property. Many systems have a dynamic number of simultaneously active objects.
Designers often do not want to limit themselves on the maximum number of
active objects. Consequently, many systems are unbounded by design. Similar
to ν-PN, we differentiate between various types of boundedness. Boundedness
expresses that the number of tokens in any reachable place does not exceed a
given bound, whereas width-boundedness expresses that the modeled system has
a bound on the number of simultaneously active objects. Notice that a width-
bounded net may be unbounded if it contains infinitely many tokens referring
to finitely many available objects.

Definition 9 (Bounded, width-bounded). Let ((P, T, F, α, β),M0) be a
marked t-PNID. A place p ∈ P is called:
– bounded if there is k ∈ N such that |M(p)| ≤ k for all M ∈ R(N,M0);
– width-bounded if there is k ∈ N such that |Id(M)|≤k for allM ∈ R(N,M0);

If all places in (N,M0) are (width-) bounded, (N,M0) is called (width-)
bounded. ⊳

4.2 Correctness Criteria on Object-Level

An object-level property assesses the correctness of individual objects. In t-
PNIDs, identifiers can be seen as references to objects: if two tokens carry the
same identifier, they refer to the same object. The projection of an identifier on
the complete reachability graph of a t-PNID represents the life-cycle of an iden-
tifier. Whereas boundedness of a t-PNID implies that states in its reachability
graph of the whole system are bounded, depth-boundedness expresses that for
each identifier the number of tokens carrying that identifier is bounded. In other
words, if a t-PNID is depth-bounded, the complete system may be unbounded,
but the life-cycle of each individual identifier is finite.

Definition 10 (Depth-boundedness). Let ((P, T, F, α, β),M0) be a marked
t-PNID. A place p ∈ P is called depth-bounded if there is k ∈ N such that
M(p)( ~id) ≤ k for all ~id ∈ I∗, M ∈ R(N,M0), and ~id ∈ C(p) with id ∈ ~id. If
all places are depth-bounded, (N,M0) is called depth-bounded. ⊳

Depth-boundedness is undecidable for ν-PNs [28] and thus also for t-PNIDs.

Proposition 2. Depth-boundedness is undecidable for t-PNIDs. ⊳

Each type has a life-cycle. Intuitively, an object of a given type “enters” the
system via an emitter that creates a unique identifier that refers to the object.
The identifier remains in the system, until the object “leaves” the system by



firing a collecting transition (that binds to the identifier and consumes it). Hence,
once that transition fires, there should be no remaining tokens referring to the
removed object. The process of a type is a model that describes all possible paths
allowed for a type. It can be represented as a transition-bordered WF-net [17].
Instead of a sink and source place, a transition-bordered WF-net has transitions
that represent the start and finish of a process. A transition-bordered WF-net
is sound, if its closure is sound. As shown in Fig. 2, its closure is constructed
by creating a new source place i s.t. each emitting transition consumes from i,
and a new sink place f s.t. each collecting transition produces in f . Consider in
t-PNID Nrs of Fig 1, identifier type order . Its life cycle starts with transition G.
Transitions K and V are two transitions that may remove the last reference to
an order . Soundness of a transition-bordered WF-net would require that firing
transition K or transition V would result in the final marking. In the remainder
of this section, we develop this intuition into the concept of identifier soundness.

Soundness constitutes three properties: proper completion, weak termination
and quasi-liveness. Similarly to [15], we focus on the first two properties. Proper
completion states that if a marking covers the final marking, it is the final mark-
ing. In other words, as soon as a token is produced in the final place, all other
places are empty. Following the idea of transition-bordered WF-nets, identifiers
should have a similar behavioral property: once an identifier is consumed by a
collector, the identifier should be removed from the marking.

Definition 11 (Proper type completion). Given type λ ∈ Λ, a marked t-
PNID (N,M0) is called proper λ-completing iff for all t ∈ CN (λ), bindings ψ :
V → I and markings M,M ′ ∈ R(N,M0), if M [t, ψ〉M ′, then for all identifiers
id ∈ rng(ψ|Collect(t)) ∩ Id(M) and type(id) = λ, it holds that id 6∈ Id(M ′).4 ⊳

As an example, consider t-PNID Nrs in Fig. 1. For type customer , we have
CNrs

(customer) = {K,V }. In the current – empty – marking, transition T is
enabled with binding ψ = {y 7→ o, z 7→ c}, which results in marking M with
M(customer) = [c]. Next, transitions G, H, J , L and N can fire, all using the
same binding, producing marking M ′ with M ′(p) = [o, c], M ′(customer) = [c]
and M ′(q) = M ′(r) = [c]. Hence, transition K is enabled with binding ψ.
However, firing K with ψ results in marking M ′′ with M ′′(customer) = [c],
while ψ(z) = c. Hence, Nrs is not properly customer -completing.

Weak termination for a WF-net signifies that from any reachable marking,
the final marking can be reached. Translated to identifiers, it should always
eventually be possible to remove an identifier from a marking.

Definition 12 (Weak type termination). Given type λ ∈ Λ, a marked t-
PNID (N,M0) is called weakly λ-terminating iff for every M ∈ R(N,M0) and
identifier id ∈ I(λ) such that id ∈ Id(M), there exists a markingM ′ ∈ R(N,M)
with id 6∈ Id(M ′). ⊳

Identifier soundness combines the two properties of proper type completion
and weak type termination: the former ensures that as soon a collector fires
for an identifier, the identifier is removed, whereas the latter ensures that it is
always eventually possible to remove that identifier.

4 Here, we constrain ψ only to objects of type λ that are only consumed.



Definition 13. A marked t-PNID (N,M0) is λ-sound iff it properly λ-completes
and weakly λ-terminates. It is identifier sound iff it is λ-sound for every λ ∈
type(N). ⊳

There are two interesting observations that one can make about the identifier
soundness property. First, identifier soundness does not imply soundness in the
classical sense: any classical net N without types, i.e., type(N) = ∅, is identifier
sound, independently of the properties of N . Second, identifier soundness implies
depth-boundedness. In other words, if a t-PNID is identifier sound for all types,
it cannot accumulate infinitely many tokens carrying the same identifier.

Lemma 2. If a t-PNID (N,M0) is identifier sound, then it is depth-bounded.⊳

Proof. Suppose that (N,M0) is identifier sound, but not depth-bounded. Then,

at least for one place p ∈ P and identifier id ∈ C(p) of type ~λ there exists
an infinite sequence of increasing markings Mi, all reachable in (N,M0), such

thatMi(p)(id) < Mi+1(p)(id). Assume λ ∈ ~λ. As (N,M0) weakly λ-terminates,
there exists M ′ ∈ R(N,M) such that u 6∈ Id(M ′), where type(u) = λ. This
means that the above sequence cannot exist as all constituents of id must be
eventually removed. Hence, (N,M0) is depth-bounded. ⊣

As identifier soundness relies on reachability, it is undecidable.

Theorem 1. Identifier soundness is undecidable for t-PNIDs. ⊳

Proof. Let (N,M0) be a marked t-PNID. By Definition 13, we need to show
that it properly completes and weakly terminates. Since the latter requires a
reachability test, it is undecidable by Proposition 1. ⊣

The above theorem also naturally follows from the fact that all non-trivial
decision problems are undecidable for Petri nets in which tokens carry pairs of
data values (taken from unordered domains) and in which element-wise equality
comparisons are allowed over such pairs in transition guards [19].

5 Correctness by Construction

As shown in the previous section, identifier soundness is undecidable. However,
we are still interested in ensuring correctness criteria over the modeled system.
In this section, we propose a structural approach to taming the undecidability
and study sub-classes of t-PNIDs that are identifier sound by construction.

5.1 EC-Closed Workflow Nets

WF-nets are widely used to model business processes. The initial place of the
WF-net signifies the start of a case, the final place represents the goal state, i.e.,

tCtE
(p)=

NN

Fig. 3. EC-closure of a WF-net N .



the process case completion. A firing sequence from initial state to final state
represents the activities that are performed for a single case. Thus, a WF-net
describes all possible sequences of a single case. Process engines, like Yasper [14]
simulate the execution of multiple cases in parallel by coloring the tokens with
the case identifier (a similar idea is used for resource-constrainedWF-net variants
of ν-PNs in [23]). In other words, they label each place with a case type, and
inscribe each arc with a variable. To execute it, the WF-net is closed with an
emitter and a collector, as shown in Figure 3. We generalize this idea to any
place label, i.e., any finite sequence of types may be used to represent a case.

Definition 14 (EC-Closure). Given a WF-net N , place type ~λ ∈ Λ∗ and

a variable vector ~v ∈ V∗ such that type(~v) = ~λ. Its EC-closure is a t-PNID
W(N,λ,~v) = (PN , TN ∪ {tE , tC}, FN ∪ {(tE , in), (out , tC)}, α, β), with:

– α(p) = ~λ for all places p ∈ PN ;
– β(f) = ~vW (f) for all flows f ∈ FN , and β((te, in)) = β((out , tc)) = [~v]; ⊳

The EC-closure of a WF-net describes all cases that run simultaneously at
any given time. In other words, any reachable marking of the EC-closure is the
“sum” of all simultaneous cases. Lemma 3 formalizes this idea by establishing
weak bisimulation between the projection on a single case and the original net.

Lemma 3 (Weak bisimulation for each identifier). Let N be a WF-net,
~λ ∈ Λ∗ be a place type and ~v ∈ V∗ be a variable vector s.t. type(~v) = ~λ. Then,

for any id ∈ I |~λ|, ρr(ΓW(N,~λ,~v),∅) ≈ ΓN,[in] with r(t, ψ) = r(t), if ψ(~v) = id,

and r((t, ψ)) = τ , otherwise. ⊳

Proof. Define R = {(M,m) | ∀p ∈ P : M(p)(a) = m(p)}. We need to show
that R is a weak bisimulation. (⇒) Let M,M ′ and m be such markings that
(M,m) ∈ R and M [t, ψ〉M ′, with t ∈ T and ψ : V → I. By Definition 14,

ψ(~v) = u, for some u ∈ I |~λ|. From the firing rule, we obtainM ′(p)+[uW ((p,t))] =
M(p)+[uW ((t,p))], for any p ∈ P . If u 6= id, then r(t, ψ) = τ , and (M ′,m) ∈ R. If
u = id, there exists such marking m′ that m[t〉m′ (since m(p) = M(p)(id) and
thus m(p) ≥W ((p, t))) and m′(p)+W ((p, t)) =M(p)(id)+W ((t, p)). Then, by
construction, m′(p) =M ′(p)(id) and (M ′,m′) ∈ R.
(⇐) By analogy with the previous argument. ⊣

A natural consequence of this weak bisimulation result is that any EC-closure
of a WF-net is identifier sound if and only if the underlying WF-net is sound.

Theorem 2. Given a WF-Net N , if N is sound, then W(N,~λ,~v) is identifier

sound and live, for any place type ~λ ∈ Λ∗ and variable vector ~v ∈ V∗ with
type(~v) = ~λ. ⊳

Proof. Let W(N,~λ,~v) = (P, T, F, α, β). By definition of W, Collect(t) = ∅ for
any transition t ∈ T \{tC}. Hence, only transition tC can remove identifiers, and

thus, by construction, W is properly type completing on all λ ∈ ~λ.
Next, we need to show thatM is weakly type terminating for all types λ ∈ ~λ.

Let M ∈ R(W, ∅), with firing sequence η ∈ (T × (V → I))∗, i.e., M0[η〉M .
Let id ∈ C(p) such that M(p)(id) > 0 for some p ∈ P . We then construct a
sequence ω by stripping the bindings from ηs.t. it contains only transitions of T .
Then, using Lemma 3, we get that [in][ψ〉m, with m(p) =M(p)(id). Since N is
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Fig. 4. Construction rules of the typed Jackson Nets.

sound, there exists a firing sequence ω′ such that m[ω′〉[out ]. Again by Lemma 3,
a firing sequence η′ exists such that M [η′〉M ′ and (M ′, [out ]) ∈ R(W, ∅)|

id
,

where R(W, ∅)|
id

is the set of all reachable markings containing id. Hence, if
M ′(p)(id) > 0, then p = out . Thus, transition tC is enabled with some binding
ψ such that ψ(~v) = id, and a marking M ′′ exists such that M ′[tc, ψ〉M

′′, which
removes all identifiers in id from M ′. Hence, W is identifier sound.

As transition te is always enabled, any transition is live, since N is quasi live.
Hence W(N,~λ,~v) is live. ⊣

5.2 Typed Jackson Nets

A well-studied class of processes that guarantee soundness are block-structured
nets. Examples include Process Trees [20], Refined Process Structure Trees [30]
and Jackson Nets [13]. Each of the techniques have a set of rules in common
from which a class of nets can be constructed that guarantees properties like
soundness. In this section, we introduce Typed Jackson Nets (t-JNs), extending
the ideas of Jackson Nets [13, 17] to t-PNIDs, that guarantee both identifier
soundness and liveness. The six reduction rules presented by Murata in [24]
form the basis of this class of nets. The rules for t-JNs are depicted in Figure 4.

Rule 1: Place Expansion. The first rule is based on fusion of a series of
places. As shown in Figure 4a, a single place p is replaced by two places pi and



pf that are connected via transition t. All transitions that originally produced
in p, produce in pi in the place expansion, and similarly, the transitions that
consumed from place p, now consume from place pf . In fact, transition t can be
seen as a transfer transition: it needs to move tokens from place pi to place pf ,
before the original process can continue. This is also reflected in the labeling of
the places: both places have the same place type, and all arcs of transition t are
inscripted with [~µ], i.e., only consuming and producing a single token in a firing.

Definition 15 (Place expansion). Let (N,M) be a marked t-PNID with
N = (P, T, F, α, β), p ∈ P be a place and ~µ ∈ V∗ be a variable vector s.t.
type(~µ) = α(p). The place expanded t-PNID is defined by Rp,~µ(N,M) =
((P ′, T ′, F ′, α′, β′),M ′), where:
– P ′ = (P \ {p}) ∪ {pi, pf} with pi, pf 6∈ P ; and T ′ = T ∪ {t} with t 6∈ T ;
– F ′ = (F \(({p}×p•)∪(•t×{p}))∪(•p×{pi})∪{(pi, t), (t, pf )}∪({pf}×p

•);
– α′(q) = α(p), if q ∈ {pi, pf}, and α

′(q) = α(q), otherwise.
– β′(f) = [~µ], if f ∈ {(pi, t), (t, pf )}, β

′((u, pi)) = β((u, p)), if u ∈ •p,
β′((pf , u)) = β((p, u)), if u ∈ p•, and β′(f) = β(f), otherwise.

– M ′(q) =M(q) for all q ∈ P \ {p}, M ′(pf ) = 0, and M ′(pi) =M(p). ⊳

Inscription ~µ cannot alter the vector identifier on the tokens, as the type
of ~µ should correspond to both place types α(p) and α(q). Hence, the transi-
tion is enabled with the same bindings as any other transition that consumes a
token from place p, modulo variable renaming. As such, transition t only “trans-
fers” tokens from place pi to place pf . Hence, as the next lemma shows, place
expansion yields a weakly bisimilar t-PNID.

Lemma 4. Let (N,M0) be a marked t-PNID with N = (P, T, F, α, β),
p ∈ P be a place to expand and ~µ ∈ V∗ be a variable vector. Then
ΓN,M0

≈rĤ{t}(ΓRp,~µ(N,M0)), with transition t added by Rp,~µ. ⊳

Proof. Let (N ′,M ′
0) = Rp,µ(N,M0). We define Q ⊆ M(N) × M(N ′) such that

M(q) = M ′(q) for all places q ∈ P \ {p} and M ′(pi) +M ′(pf ) = M(p). Then
(M0,M

′
0) ∈ Q, hence the relation is rooted.

(⇒) Let (M,M ′) ∈ Q and M [u, ψ〉M̄ , where u is as in Definition 15. We need to
show that there exists marking M̄ ′ such that M ′ (t, ψ)

M̄ ′ and (M̄, M̄ ′) ∈ Q.
Suppose p 6∈ •u. Then M ′(q) = M(q) and M(q) ≥ ρψ(β((p, u))) (note that

ρψ(β((p, u))) = ρψ(β
′((p, u)))). By the firing rule, a marking M̄ ′ exists with

M ′[u, ψ〉M̄ ′, M̄(q) = M̄ ′(q) for all q ∈ P ′. Thus, (M̄, M̄ ′) ∈ Q. Suppose p ∈ •u.
Then ρψ(β((pf , u))) ≤ M(p) = M ′(pi) + M ′(pf ). If ρψ(β(pf , u))) ≤ M ′(pf ),
then transition u is enabled, and a marking M̄ ′ exists with M ′[u, ψ〉M̄ ′ and
(M ′, M̄ ′) ∈ Q. Otherwise, ρψ(β(pf , u))) ≤ M ′(pi). Construct a binding ψ′ by
letting ψ′(µ(i)) = ψ(β(p, u)(i)), for all 1 ≤ i ≤ |µ|. Then, ρψ′(µ) = ρψ(β(p, u)),
and transition t is enabled with binding ψ′. Hence, a marking exists M ′′ with
M ′[t, ψ′〉M ′′ and ρψ(β((p

′, u))) ≤M ′′(p′). Then (M,M ′′) ∈ Q and t is labeled τ
in Ĥ{t}(R(p,~µ)(N)), and the first case applies onM ′′. In all cases,M ′ (t, ψ)

M̄ ′.
(⇐) By analogy with the previous argument. ⊣

Rule 2: Transition Expansion. The second rule is transition expansion,
which corresponds to Murata’s fusion of series transitions. As shown in Fig. 4b,



transition t is divided into two transitions, tc that consumes the tokens, and a
second transition tp that produces the tokens. The two transitions are connected
with a single, fresh place p. This place can have any type, as long as it does not
hamper firing the post transition tp, i.e., place p should ensure that all variables
consumed by tc, and that are required by te are passed. Transition tc is allowed
to emit new identifiers, as long as these are not already produced by tp.

Definition 16 (Transition expansion). Let (N,M) be a marked t-PNID
with N = (P, T, F, α, β), let t ∈ T , and let λ ⊆ Λ∗ and µ ∈ (V \ Emit(t))∗

such that type(x) ∈ λ and x ∈ µ, for all x ∈ In(t), and type(µ) = λ. The tran-
sition expanded t-PNID is defined by Rt,λ,µ(N,M) = ((P ′, T ′, F ′, α′, β′),M),
where:

– P ′ = P ∪ {p} with p 6∈ P ; and T ′ = (T \ {t}) ∪ {te, tc} with te, tc 6∈ T ;
– F ′ = (F \ ((•t×{t})∪ ({t}× t•)))∪ (•t×{te})∪{(te, p), (p, tc)}∪ ({tc}× t

•);
– α′(p) = λ and α′(q) = α(q) for all q ∈ P ;
– β′(f) = [µ] if f ∈ {(te, p), (p, tc)}, β

′((q, te)) = β((q, t)) for q ∈ •t,
β′((tc, q)) = β((t, q)) for q ∈ t•, and β′(f) = β(f) otherwise. ⊳

Transition te is allowed to introduce new variables, but key is that inscription
µ contains all input variables of transition t. Consequently, µ encodes the binding
of transition t. We use this to prove weak bisimulation between a t-PNID and
it transition expanded net. The idea behind the simulation relation Q is that
the firing of te is postponed until tc fires. In other words, Q encodes that tokens
remain in place q until transition tc fires.

Lemma 5. Given marked t-PNID (N,M0) with N = (P, T, F, α, β), transition
t ∈ T , λ ∈ Λ∗ and µ ∈ V∗. Let te, tc be the transitions added by the expansion.
Then ΓN,M0

≈r ρr(ΓRt,λ,µ(N,M0)) with r = {(te, τ), (tc, t)}. ⊳

Proof. Let N ′ = Rt,λ,µ(N). Define relation Q ⊆ M(N) × M(N ′) such
that M(q) = M ′(q) for all places q ∈ P \ •t and M(q) = M ′(q) +
∑

b∈supp(M ′(p))M
′(p)(b) ·ρµ(b)β((q, t)), where µ(b) is a shorthand for the binding

ψ : V → I with ψ(x) = b(i) iff µ(i) = x for all 1 ≤ i ≤ |µ|. Then (M0,M0) ∈ Q.

(⇒) Follows directly from the firing rule, and the construction of µ.

(⇐) Let (M,M ′) ∈ Q and M ′[u, ψ〉M̄ ′. We need to show a marking M̄ ex-

ists such that M
(t, ψ)

M̄ and (M̄, M̄ ′) ∈ Q. If te 6= u 6= tc, the state-
ment holds by definition of the firing rule. Suppose u = te, i.e., r(u) = τ .
Hence, we need to show that (M, M̄ ′) ∈ Q. Let q ∈ •t. Since (M,M ′) ∈ Q,
we have M(q) = M ′(q) +

∑

b∈supp(M ′(p))M
′(p)(b) · ρµ(b)β((q, t)). By the firing

rule, we have M̄ ′(p) = M ′(p) + [ρψ(µ)] and M ′(q) = M̄ ′(q) + ρψ(β((q, t))).
By construction, ρψ and ρµ([ρψ(µ)]) are identical functions. Rewriting gives

M(q) = M̄ ′(q) +
∑

b∈supp(M̄ ′(p))M
′(p)(b) · ρµ(b)β((q, t)), and thus (M, M̄ ′) ∈ Q.

Suppose u = tc, i.e., r(u) = t and [ρψ(µ)] ≤ M ′(p). Let q ∈ •t. Then
M(q) =M ′(q)+

∑

b∈supp(M ′(p))M
′(p)(b) ·ρµ(b)β((q, t)). Since M̄

′(p)+[ρψ(µ)] =

M ′(p) and ρψ(β((q, u))) = ρµ([ρψ(µ)])(β((q, u))), we obtain M(q) = M ′(q) +
(

∑

b∈supp(M̄ ′(p)) M̄
′(p)(b) · ρµ(b)β((q, t))

)

+ ρψβ((q, t)). Hence, a marking M̄ ex-

ists such that M [t, ψ〉M̄ . Rewriting gives (M̄, M̄ ′) ∈ Q. ⊣



Rule 3: Place Duplication. Whereas the previous two rules only introduced
ways to create sequences, the third rule introduces parallelism by duplicating
a place, as shown in Figure 4c. It is based on the fusion of parallel transitions
reduction rule of Murata. For t-PNIDs, duplicating a place has an additional
advantage: as all information required for passing the identifiers is already guar-
anteed, the duplicated place can have any place type.

Definition 17 (Duplicate place). Let (N,M) be a marked t-PNID with N =
(P, T, F, α, β), let p ∈ P , such that M(p) = ∅, and some transitions t, u ∈ T

exist with •p = {t} and p• = {u}. Let λ ∈ Λ∗ and µ ∈ (V \ Emit(u))∗ such
that type(µ) = λ. Its duplicated place t-PNID is defined by Dp,λ,µ(N,M) =
((P ′, T, F ′, α′, β′),M), where:

– P ′ = P ∪ {q}, with q 6∈ P , and F ′ = F ∪ {(t, q), (q, u)};
– α′ = α ∪ {q 7→ λ} and β′ = β ∪ {(t, q) 7→ [µ], (q, u) 7→ [µ]}. ⊳

As the duplicated place cannot hamper the firing of any transition, all be-
havior is preserved by a strong bisimulation on the identity mapping.

Lemma 6. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), place
p ∈ P , λ ∈ Λ∗ and µ ∈ V∗. Then ΓN,M0 ∼r ΓDp,λ,µ(N,M0). ⊳

Proof. Let (N ′,M ′
0) = Dp,λ,µ(N). Define relation Q ⊆ M(N)×M(N ′) such that

(M,M ′) ∈ Q iff M(p) = M ′(p) for all places p ∈ P . The bisimulation relation
trivially follows from the firing rule. ⊣

Rule 4: Transition Duplication. As already recognized by Berthelot [6], if
two transitions have an identical preset and postset, one of these transitions can
be removed while preserving liveness and boundedness. Murata’s fusion of par-
allel places is a special case of this rule, requiring that the preset and postset are
singletons. For t-JNs, this results in the duplicate transition rule: any transition
may be duplicated, as shown in Figure 4d.

Definition 18 (Duplicate place). Let (N,M) be a marked t-PNID with N =
(P, T, F, α, β), and let t ∈ T such that some places p, q ∈ P exist with •t =
{p} and t• = {q}. Its duplicated transition t-PNID is defined by Dt(N,M) =
((P, T ′, F ′, α, β′),M), where:

– T ′ = T ∪ {u}, with t′ 6∈ T , and F ′ = F ∪ {(p, u), (u, q)};
– β′((p, u)) = β((p, t)), β((u, q)) = β((t, q)) and β′(f) = β(f) for all f ∈ F . ⊳

As the above rule only duplicates t ∈ T , the identity relation on markings is
a strong rooted bisimulation. The proof is straightforward from the definition.

Lemma 7. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), and tran-
sition t ∈ T . Then ΓN,M0 ∼r ρ{(u,t)}(ΓDt(N,M0)). ⊳

Proof. Let (N ′,M ′
0) = Dt(N). Define relation Q ⊆ M(N) × M(N ′) such that

(M,M ′) ∈ Q iff M(p) = M ′(p) for all places p ∈ P . The bisimulation relation
trivially follows from the firing rule. ⊣

Rule 5: Adding Identity Transitions. In [6], Berthelot classified a tran-
sition t with an identical preset and postset, i.e., •t = t• as irrelevant, as its
firing does not change the marking. The reduction rule elimination of self-loop



transitions is a special case, as Murata required these sets to be singletons. For
t-JNs, adding a self-loop transition is the fifth rule, as shown in Figure 4e.

Definition 19 (Self-loop addition). Let (N,M be a marked t-PNID with
N = (P, T, F, α, β), and let p ∈ P . Its Self-loop Added t-PNID is defined by
Ap(N,M) = ((P, T ′, F ′, α, β′),M), where:

– T ′ = T ∪ {t}, with t 6∈ T , and F ′ = F ∪ {(p, t), (t, p)};
– β′((p, t′)) = β′((p, t′)) = [~µ] with ~µ ∈ V∗ such that type(µ) = α(p), and
β′(f) = β(f) otherwise. ⊳

Similar to the duplicate transition rule, the self-loop addition rule does not
introduce new behavior, except for silent self-loops. Hence, the identity relation
on markings is a weak rooted bisimulation.

Lemma 8. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), and place
p ∈ P . Then ΓN,M0

≈r Ĥ{t}(ΓAp(N,M0)) with t the added self-loop transition. ⊳

Proof. Let (N ′,M ′
0) = Ap(N,M0). Define relation Q ⊆ M(N)×M(N ′) such that

(M,M ′) ∈ Q iff M(p) = M ′(p) for all places p ∈ P . The bisimulation relation
trivially follows from the firing rule. ⊣

Rule 6: Identifier Introduction. The first five rules preserve the criteria of
block-structured WF-nets. Murata’s elimination of self-loop places states that
adding or removing a marked place with identical preset and postset does pre-
serve liveness and boundedness. This rule is often used to introduce a fixed re-
source to a net, i.e., the number of resources is determined in the initial marking.
Instead, identifier introduction adds dynamic resources, as shown in Figure 4f:
transition te emits new identifiers as its inscription uses only “new” variables
(i.e., those that have not been used in the net), and place p works like a storage
of the available resources, which can be removed by firing transition tc.

Definition 20 (Identifier Introduction). Let (N,M) be a marked t-PNID

with N = (P, T, F, α, β), let t ∈ T , let ~λ ∈ (Λ \ type(N))∗ and ~µ ∈ V∗ such that

type(~µ) = ~λ. The Identifier introducing t-PNID is defined by A
t,~λ,~µ

(N,M) =

((P ′, T ′, F ′, α′, β′),M), where:

– P ′ = P ′ ∪ {p} and T ′ = T ∪ {te, tc}, for p 6∈ P and te, tc 6∈ T , and F ′ =
F ∪ {(p, t), (t, p), (te, p), (p, tc)};

– α′ = α ∪ {p 7→ ~λ} and β′ = β ∪ {(p, t) 7→ [~µ], (t, p) 7→ [~µ], (te, p) 7→
[~µ], (p, tc) 7→ [~µ]}; ⊳

Lemma 9. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), transition

t ∈ T , ~λ ∈ Λ∗ and ~µ ∈ (V \ Var(t))∗. Then ΓN,M0 ≈r Ĥ{te,tc}(ΓA(p)(N,M0)) with
te, tc the added transitions. ⊳

Proof. Let N ′ = (P ′, T ′, F ′, α′, β′). Define Q ⊆ M(N) × M(N ′) such that
(M,M ′) ∈ Q iff M(p) =M ′(p) for all p ∈ P .

(⇒) Suppose M [u, ψ〉M̄ ′. If t 6= u, the statement directly follows from the firing
rule. If t = u, then a marking M ′′ and binding ψ′ exists such that M ′[te, ψ

′〉M ′′.
Then M ′(p) > ∅, (M,M ′′) ∈ Q, and M ′′[t, ψ〉. Hence, markings M̄ ′′ and M̄ ′

exist such that M ′′[t, ψ〉M̄ ′′[tc, ψ
′〉M̄ ′, and (M ′, M̄ ′′), (M ′, M̄ ′) ∈ Q.

(⇐) Follows directly from the firing rule. ⊣



As shown in [28], unbounded places are width-bounded, i.e., can contain
an infinite number of identifiers, or depth-bounded, i.e., for each identifier, the
number of tokens carrying that identifier is bounded, or both. The place added
by the identifier creation rule is by definition width-unbounded, as it has an
empty preset. However, it is identifier sound, and thus depth-bounded, as shown
in the next lemma.

Lemma 10. Given a marked t-PNID (N,M) with N = (P, T, F, α, β). Then
A
t,~λ,~µ

(N,M) is identifier sound iff (N,M) is identifier sound. ⊳

Proof. Let (N ′,M ′) = A
t,~λ,~µ

(N,M), and let p ∈ P ′ \P . Let ~λ ∈ type(N ′). If ~λ ∈

type(N), it is ~λ-sound by Lemma 9. Suppose ~λ 6∈ type(N). Then EN ′(λ) = {te}

and CN ′(λ) = {tc}. Let a ∈ Id(M) such that type(a) = ~λ. Then an ~id ∈ C(p)

exists with a ∈ ~id and M(p)(~id) = 1. Hence, a binding ψ exists such that

ψ(~µ) = ~id, and transition tc is enabled with ψ. Let M ′ be a marking such that
M [tc, ψ〉M

′. Then a 6∈ Id(M ′), which proves the statement. ⊣

Any net that can be reduced to a net with a single transition using these
rules is called a typed Jackson Net (t-JN).

Definition 21. The class of typed Jackson Nets T is inductively defined by:
– ((∅, {t}, ∅, ∅, ∅), ∅) ∈ T ;
– if (N,M) ∈ T , then Rp,~µ(N,M) ∈ T ;
– if (N,M) ∈ T , then R

t,~λ,~µ
(N,M) ∈ T ;

– if (N,M) ∈ T , then D
p,~λ,~µ

(N,M0) ∈ T ;

– if (N,M) ∈ T , then Dt(N,M) ∈ T ;
– if (N,M) ∈ T , then Ap(N,M) ∈ T ;
– if (N,M) ∈ T , then A

t,~λ,~µ
(N,M) ∈ T . ⊳

As any t-JN reduces to a single transition, and each construction rule goes
hand in hand with a bisimulation relation, any liveness property is preserved.
Consequently, any t-JN is identifier sound and live.

Theorem 3. Any typed Jackson Net is identifier sound and live. ⊳

Proof. We prove the statement by induction on the structure of t-JNs. The
statement holds trivially for the initial net, ((∅, {t}, ∅, ∅, ∅), ∅). Suppose (N,M) ∈
T . Then for each of the rules, the statement follows directly from the respective
bisimulation relations of Lemma 4 – 9, and the result of Lemma 10. ⊣

To solve the problem of the running example, several solutions exist. One
solution is shown in Figure 5. In this example, the net is a t-JN: starting from
transition G, a self loop is added (transition G). The transition is then expanded
with transition Z. Place p is then duplicated to create the subnet R. In this way,
subnet R only knows of type offer , as the connection with customer is stored in
place p. Consequently, the net is identifier sound, and live.

5.3 Workflow Refinement

A well-known refinement rule is workflow refinement [15]. In a WF-net, any place
may be refined with a generalized soundWF-net. If the original net is sound, then
the refined net is sound as well. In this section, we present a similar refinement
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Fig. 5. The example of the retailer shop as a typed Jackson Net.

rule. Given a t-PNID, any place may be refined by a generalized sound WF-net.
In the refinement, each place is labeled with the place type of the refined place,
and all arcs in the WF-net are inscribed with the same variable vector.

Definition 22 (Workflow refinement). Let L = (PL, TL, FL, αL, βL), be a
t-PNID, p ∈ PL a place, and N = (PN , TN , FN ,WN , inN , outN ) a WF-net.
Workflow refinement is defined by L⊕p N = (P, T, F, α, β), where:
– P = (PL \ {p}) ∪ PN and T = TL ∪ TN ;
– F = (FN ∩ ((P ×T )∪ (T ×P )))∪FL∪{(t, inN ) | t ∈ •p}∪{(out , t) | t ∈ p•};
– α(q) = αN (q) for q ∈ PL \ {p}, and α(q) = α(p) for q ∈ PN ;
– β(f) = βL(f) for f ∈ FL, β(f) = [~µ](W (f))for f ∈ FN and type(~µ) = α(p),
β((t, in)) = β((t, p)) for t ∈ •t and β((out , t)) = β((p, t)) for t ∈ t•. ⊳

Generalized soundness of a WF-Net ensures that any number of tokens in
the initial place are “transferred” to the final place. As shown in Section 5.1, the
EC-closure of a sound WF-net is identifier sound and live. A similar approach
is taken to show that the refinement is weakly bisimilar to the original net.
Analogously to [15], the bisimulation relation is the identity relation, except for
place p. The relation maps all possible token configurations of place p to any
reachable marking in the WF-net, given p’s token configuration.

Lemma 11. Let L = (PL, TL, FL, αL, βL) be a t-PNID with initial marking M0,
let p ∈ PL be a place s.t. M0(p) = ∅, and let N = (PN , TN , FN ,WN , inN , outN )
be a WF-net. If N is generalized sound, then ΓL ≈r ĤTN (ΓL⊕pN ). ⊳

Proof. For simplicity, we start by defining a type extension of N as a t-PNID
N ′ = (PN , TN , FN , α, β), where type(~v) = ~λ, α(p) = ~λ for all places p ∈ PN , and
β(f) = ~vW (f) for all f ∈ FN , and β((te, in)) = β((out , tc)) = [~v].

To prove bisimilarity, we define R = {(M,M ′ +m) | M ∈ R(L,M0),M
′ ∈

A,m ∈ B} where A = {M ′ | M ′,M ∈ R(L,M0),M
′(p) = ∅, ∀q ∈ PL \ {p} :

M ′(q) =M(q)} and B = {m | m ∈ R(N ′, [in]), [in] =M(p), ∀M ∈ R(L,M0)}.
(⇒) Let (M,M ′+m) ∈ R andM [t, ψ〉M̄ . We need to show that exists M̄ ′ and m̄

s.t. (M ′+m)
(t, ψ)

(M̄ ′+ m̄) and (M̄, M̄ ′+ m̄) ∈ R. If t 6∈ •p (or p 6∈ •t), then
M ′(q) = M(q) for all q ∈ PL \ p. Thus t is also enabled in M ′(q) and M(q) ≥
β((q, t)). Then by the firing rule there exists M̄ ′ s.t. (M ′ + m)[t, ψ〉(M̄ ′ + m)
and M̄(q) = M̄ ′(q) for all q ∈ PL. Thus, (M

′, M̄ ′ +m) ∈ R. If t ∈ •p, then, by
construction, M ′(q) = M(q) for all q ∈ PL \ p. Thus, using the same reasoning



as above, (M ′ +m)[t, ψ〉(M̄ ′ + m̄) for all q ∈ PL \ p and m̄(in) = M ′(p). Thus,
(M ′, M̄ ′ + m̄) ∈ R.

Now, assume that p ∈ •t and ρψ(β((p, t))) = id. Given that N is generalized
sound and by applying Lemma 3, there exists a firing sequence η for N ′ that
carries identifier id to out . This means that, by construction,M ′(q) =M(q), for
all q ∈ PL, and m(out)(id) =M(p)(id). Hence, t is enabled in (M ′ +m) under
binding ψ′ that differs from ψ everywhere but on place out . By the firing rule,
there exists (M̄ ′ + m̄) s.t. (M ′ +m)[t, ψ′〉(M̄ ′ + m̄) and (M, (M̄ ′ + m̄)) ∈ R.
(⇐) By analogy with the previous argument.

As a consequence of the bisimulation relation, the refinement is identifier
sound and live if the original net is identifier sound.

Theorem 4. Let (L,M) be a marked t-PNID and N be a generalized sound WF
net. Then (L,M) is identifier sound and live iff (L⊕N,M) is identifier sound
and live. ⊳

The refinement rule allows to combine the approaches discussed in this sec-
tion. For example, a designer can first design a net using the construction rules
of Section 5.2, and then design generalized WF-nets for specific places. In this
way, the construction rules and refinement rules ensure that the designer can
model systems where data and processes are in resonance.

6 Related Work

This work belongs to the line of research that aims at augmenting pure control-
flow description of processes with data, and study formal properties of the re-
sulting, integrated models. When doing so, it becomes natural to move from
case-centric process models whose analysis focuses on the evolution of a single
instance in isolation, to so-called object-centric process models where multiple
related instances of the same or different processes co-evolve. This is relevant for
process modeling, analysis, and mining [2].

Different approaches to capture the control-flow backbone of object-oriented
processes have been studied in literature, including declarative [4] and database-
centric models [22]. In this work, we follow the Petri net tradition, which comes
with three different strategies to tackle object-centric processes.

A first strategy is to represent objects implicitly. The most prominent exam-
ple in this vein is constituted by proclets [7]. Here, each object type comes with
a Petri net specifying its life cycle. Special ports, annotated with multiplicity
constraints, are used to express generation and synchronization points in the
process. Correctness analysis of proclets is an open research topic.

A second strategy is to represent objects explicitly. Models adopting this
strategy are typically extensions of ν-PNs [28], building on their ability to gen-
erate (fresh) object identifiers and express guarded transitions relating multi-
ple objects at once. The ISML approach [25] equips Petri nets with identifiers
(PNIDs) [16] with the ability of manipulating populations of objects defining
the extensional level of an ORM data model. For such models, correctness prop-
erties are assessed by imposing that the overall set of object identifiers is finite,



and fixed a-priori. Catalog-nets [10] extend PNIDs with the ability of query-
ing a read-only database containing background information. Decidability and
other meta-properties, as well as actual algorithms for verification based on SMT
model-checking, are given for safety properties, whereas (data-aware) soundness
can only be assessed for state-bounded systems[5, 22].

The third, final strategy for modeling object-centric processes with Petri nets
is to rely on models that highlight how multiple objects of different types may
flow through shared transitions, without considering object identifier values. This
approach is followed in [3], where object-centric nets are extracted from event
logs, where logged events might come with sets of object identifiers. Soundness
for this model is studied in [21].Similarly to the approach studied in this paper,
the authors in [21] assume that the system model can have any number of objects
being simultaneously active.

The approach studied in this paper focuses on the essence of Petri net-based
object-centric processes adopting the explicit approach, that is, grounded on
PNIDs. We provide, for the first time, a notion of identifier soundness that
conceptually captures the intended evolution of objects within a net, show that
such a property is undecidable to check in general, and provide a pattern-based
construction technique that guarantees to produce identifier-sound models.

7 Conclusions

Achieving harmony in models that describe how processes data objects manip-
ulate is challenging. In this paper, we use typed Petri nets with Identifiers (t-
PNIDs) to model these complex interactions of multiple objects, referred through
their identifiers. We propose identifier soundness as a correctness criterion that
conceptually captures the expected evolution of each object. Identifier soundness
is in general undecidable for t-PNIDs. For two subclasses we show that identifier
soundness is guaranteed, and that the overall model remains live.

Many systems allow for a dynamic number of simultaneously active objects.
In theory, this number can be infinite, and thus such models become width-
unbounded. However, for many systems there is a natural upper bound, which
can be either assumed or guaranteed with different modeling techniques (such as
multiplicity upper bounds on objects [22] or resources [23, 29]. One can extend t-
PNIDs by enriching objects with attributes over different datatypes, in the style
of what done in data modeling and knowledge graphs. This calls for combining
the techniques studied in this paper with data abstraction techniques used to
deal with numerical datatypes, possibly equipped with arithmetics [8, 9].

We plan to provide tool support for the designer of such systems. Although
many correctness criteria are undecidable, this does not mean designers should
be left in the dark. Since the ISM-suite [31] already allows to model t-PNIDs,
we intend to work on extending it with verification techniques to support the
modeler in designing systems where processes and data are in resonance.
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